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Abstract: As humans and climate change alter the landscape, novel disease risk scenarios emerge. Under-

standing the complexities of pathogen emergence and subsequent spread as shaped by landscape heterogeneity

is crucial to understanding disease emergence, pinpointing high-risk areas, and mitigating emerging disease

threats in a dynamic environment. Tick-borne diseases present an important public health concern and

incidence of many of these diseases are increasing in the United States. The complex epidemiology of tick-

borne diseases includes strong ties with environmental factors that influence host availability, vector abun-

dance, and pathogen transmission. Here, we used 16 years of case data from the Minnesota Department of

Health to report spatial and temporal trends in Lyme disease (LD), human anaplasmosis, and babesiosis. We

then used a spatial regression framework to evaluate the impact of landscape and climate factors on the spread

of LD. Finally, we use the fitted model, and landscape and climate datasets projected under varying climate

change scenarios, to predict future changes in tick-borne pathogen risk. Both forested habitat and temperature

were important drivers of LD spread in Minnesota. Dramatic changes in future temperature regimes and forest

communities predict rising risk of tick-borne disease.

Keywords: annaplasmosis, babesiosis, climate change, ixodes scapularis, landscape epidemiology, lyme disease,

spatial model, tick-borne pathogens, tick-borne disease

INTRODUCTION

The extent and rate of spread of emerging diseases has

important consequences for public health, as well as animal

management and conservation. Pathogens vectored by

arthropods spread at a rate affected by fine-scale factors

including habitat, host ecology, human movement, and

broad-scale factors such as temperature and precipitation.

Understanding the environmental drivers of disease spread

is essential for effective management of disease risks. Vec-

tor-borne pathogens illustrate the complexities of eco-

epidemiological processes: not only must a pathogen
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transmit to a host, but also there must be suitable envi-

ronments to support both vector and host populations, and

to facilitate contact between species.

Lyme disease (LD) is caused by the spirochete Borrelia

burgdorferi which is primarily vectored by Ixodes scapularis

(blacklegged ticks) in North America. LD provides a classic

demonstration of the linkage between environmental fac-

tors and epidemiological processes (Ostfeld et al. 1995). LD

exhibits a complex ecology in which landscape composition

and configuration shape the mammalian communities

available for tick feeding (Allan et al. 2003; Ostfeld et al.

2006), and climatic factors influence the survival, life cycle,

and phenology of ticks as well as that of potential host

communities (Gatewood et al. 2009; Ogden et al. 2004).

Since LD was first recognized in the mid-1970s (Steere et al.

1977), it has become the most common vector-borne ill-

ness in the USA (Killilea et al. 2008). I. scapularis is also the

primary vector of several less common, but emerging,

pathogens including the agents of human anaplasmosis

(HA, Anaplasma phagocytophilum), babesiosis (Babesia

spp.), and a form of human ehrlichiosis (HE, Ehrlichia

muris-like agent; Pritt et al. 2011). Thus, the ecology of

I. scapularis, tick hosts, and pathogens is crucial for mul-

tiple public health concerns.

The impact of global climate change on the risk of

infectious diseases is a hotly debated topic in both ecology

and public health (Altizer et al. 2013; Dobson and Randolph

2011; Harvell et al. 2009; Randolph 2010). In the case of

arthropod-vectored pathogens, mounting evidence suggests

that climate change will alter disease dynamics by creating

hospitable climate conditions for survival and expansion of

vector populations (Lindgren et al. 2000; Ogden et al. 2006),

and by allowing accelerated pathogen development (Ogden

et al. 2008), and facilitating pathogen transmission cycles

(Rogers and Randolph 2006). The prolonged multi-host

feeding behavior of ticks makes pathogen transmission

highly dependent on developmental rate and seasonal syn-

chrony of tick life stages which are both subject to climate

drivers (Gatewood et al. 2009; Ogden et al. 2008; Randolph

1998). Further, because questing I. scapularis withstand a

relatively narrow range of temperature and humidity con-

ditions, climate may strongly influence host-seeking

behavior (Perret et al. 2000; Schulze and Jordan 2003; Vail

and Smith 2002), where questing is curtailed in hotter or

more arid conditions (Schulze and Jordan 2003; Schulze

et al. 2001). Climate may also limit tick populations through

limits imposed on host populations (Lewellen and Vessey

1998; Ogden et al. 2006).

Expansion of tick populations and tick-borne patho-

gens (TBP) have been associated with anthropogenic land

use change (Harrus and Baneth 2005) and changing cli-

mate (Altizer et al. 2013; Githeko et al. 2000; Randolph

2010). Minnesota (MN) sits near the western edge of

I. scapularis’ range and the Midwestern focus of LD (Diuk-

Wasser et al. 2010; Hamer et al. 2010), and large-scale

modeling suggests increasing risk of LD across the USA

(Estrada-Pena 2002), and Canada (Ogden et al. 2013).

Within MN, I. scapularis has expanded northward since

2000 (MDH, unpublished data). Additionally, recent

investigations indicate northern range expansions of the

white-footed mouse (Peromyscus leucopus), an important

tick and pathogen host (Simon et al. 2014). The estab-

lishment of both host and vector populations provides

conditions for TBP emergence.

While much TBP research has focused on the origin of

LD in the Northeast USA, the Upper Midwest remains an

understudied, but important system, in terms of public

health and landscape epidemiology of TBP. The incidence

of reported LD and HA cases has increased nationally since

the 1990s, and incidence in Minnesota (MN) has consis-

tently been in the top 20% nationwide (Bacon et al. 2008;

Demma et al. 2005). Babesiosis, which was not nationally

notifiable until 2011, occurs less frequently but is increas-

ingly reported (Diuk-Wasser et al. 2014; Krause et al. 2003).

MN provides a natural case study for understanding im-

pacts of landscape gradients and changing climate on TBP.

The state spans nearly 6 latitudinal degrees covering over

650 km north to south. Parkland and mixed forest ecoz-

ones mark distinct landscapes providing varied tick habitat.

Due to its northern continental location, MN is expected to

experience climate change pressures that will alter this

landscape and the composition of both plant and animal

communities (Pryor et al. 2013).

In this study, we combine public health and environ-

mental data to analyze factors shaping the spread of TBP in

MN as a means to understand current disease risk, predict

future spread of disease, and aid public health planning.

Our first objective was to present public health data

describing the emergence and spread of TBP in MN (1996–

2011). Next, we constructed a multivariate landscape epi-

demiological model to discern the impacts of spatial, cli-

matic, vegetative cover, and host-related risk factors in TBP

spread. Finally, we used the fitted model in combination

with projected changes in climate and forest cover, to

predict changes in TBP risk in MN by the year 2100.

Understanding the dynamic nature of environmental risk
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factors will help shape public health actions and inform

future strategies to mitigate TBP risk.

METHODS

Study Area and TBP Data

The study area covered the state of Minnesota, USA. We

examined TBP incidence from 1996 to 2011 using surveillance

data provided by the Minnesota Department of Health

(MDH). The first LD cases in Minnesota were reported in the

early 1980s in east-central counties, with the presumed origin

in Pine County (based on early case numbers, and proximity

to LD prevalence in neighboring Wisconsin; Schmid et al.

1985) (Fig. 1). Disease surveillance and reporting methods for

LD, HA, and babesiosis did not change substantially between

1996 and 2011. Reports meeting surveillance case definitions

(Council of State and Territorial Epidemiologists 1997) for

confirmed (clinical diagnosis and laboratory detection of

agent) LD or babesiosis and confirmed or probable (clinical

diagnosis only) HA were used to calculate disease incidence.

We report case data at the county level to maintain patient

privacy. County-specific incidence was based on county of case

residence at the time of illness onset, and is presented as inci-

dence per 100,000 county residents (to account for variation in

county populations from approximately 4,000 to over

1,000,000; U.S. Census Bureau 2010). Summary statistics are

presented for LD, HA, and babesiosis. Because LD was the most

prevalent, and thus provided the most data, it was the focus for

disease risk modeling. The limited number of HA and babe-

siosis cases per time point was insufficient for reliable inference

from statistical models. However, we expect our landscape

epidemiological model for LD to be generally applicable to the

public health management of I. scapularis-vectored TBP.

Environmental Data

We constructed a multivariate risk model based on disease

spread, vector habitat conditions, host communities, and

Figure 1. Incidence of Lyme disease, human anaplasmosis, and babesiosis increased across Minnesota from 1996 to 2011. Data are based on

cases reported to the Minnesota Department of Health, summarized by county. The color legend represents cases per 100,000 county residents.
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climate factors. Distance (DIST) and angle (ANGL) from

LD origin were measured from the centroid of county i to

the centroid of Pine County, to account for the process of

disease diffusion under which it would be expected for the

disease agent to take longer to reach areas far from the

origin.

Because LD risk is closely tied to landscape charac-

teristics, we evaluated the impact of predominant landcover

types in MN (based on level 2 classifications in the MN

GAP dataset (Minnesota Department of Natural Resources

2013). Each landcover type was quantified as the percent of

land occupied within each county based on 30 m2 pixels

using the Zonal Histogram tool in ArcGIS 10 (ESRI Inc.,

Redlands, CA). Deciduous forest habitat (DEC, approxi-

mately 18.88% of MN landcover) is crucial habitat for both

small and large mammal hosts for I. scapularis, and is re-

lated to tick abundance (LoGiudice et al. 2003). Lower LD

risk may be expected as coniferous forests (CON, 8.21%)

replace deciduous. Urban landcover (URB, 1.87%) may be

an important indicator of habitat fragmentation and po-

tential for human contact with ticks. The adaptability of

both deer and mice to small patches of habitat, combined

with high human densities, can create high TBD risk in

urban/suburban areas (Allan et al. 2003; Lewellen and

Vessey 1998; Nupp and Swihart 1998). Agricultural lands

and grasslands (AGG, 53.84%) typically provide poor

habitat for tick populations even when adequate host

populations are present. This may be due to microclimate

factors that are less favorable for tick survival and questing

compared to forested areas (Guerra et al. 2002; Sumilo

et al. 2006). Water bodies and wetlands (WET, 9.57%)

might provide an index of local humidity and soil moisture

conditions that would be important for tick questing, and

may indicate higher human exposure to ticks through

outdoor recreation (Schwartz and Goldstein 1990).

White-tailed deer are crucial for adult tick feeding and

reproduction, making deer populations key drivers of tick

density on the landscape; accordingly, deer have been clo-

sely associated with tick distributions (Duffy et al. 1994;

Leger et al. 2013; Wilson et al. 1985). We used the annual

deer harvest (DEER) in each county as a measure of po-

tential adult-tick host populations to support tick popu-

lations (data from Minnesota Department of Natural

Resources 2013). While small mammals also constitute

critical host populations for immature tick stages, statewide

data were limited. We expect that the above landscape

variables will provide a valuable proxy for small mammal

habitat impacting tick populations.

We also evaluated several climatic factors likely to

influence the life cycles and host-seeking activity of ticks

and the incidence of LD (compiled from all weather sta-

tions in Minnesota from 1996 to 2011; MN State Clima-

tology Office 2013). Temperature is an important factor

driving tick survival and development (Lindsay et al. 1995).

We measured average yearly minimum (Tmin) and maxi-

mum (Tmax) temperatures. Additionally, degree days above

freezing (DD > 0) has been shown to be a useful index of

climate impacts on tick life cycles whereby insufficient

DD > 0 may depress development to a degree that few

larvae develop quickly enough to quest within the year they

hatch, thus limiting populations when many ticks deplete

their energy reserves and die before finding a host (Lindsay

et al. 1995; Ogden et al. 2005). We evaluated the effect of

DD > 0 as both a numerical and a categorical variable to

represent threshold effects on tick growth cycles (cold:

fewer than 2,900 DD > 0, fair: 2,901–3,200 DD > 0, and

ideal: greater than 3,200 DD > 0; values after Ogden et al.

2005). Previous studies have found precipitation to be a

crucial climate factor affecting tick populations (Jones and

Kitron 2000; McCabe and Bunnell 2004). We calculated

average annual precipitation (PREC). Average annual

snowfall was measured separately (SNOW), to provide an

indication of winter severity and snow cover (Ogden et al.

2013).

Environmental Risk Factor Model

To capture the spatial and temporal complexities of LD

epidemiology in MN, we used a multi-faceted modeling

approach. We first summarized temporal trends in LD

incidence using response feature analysis, which is an

effective way to distill relevant aspects of a response variable

over time or across longitudinal data (Matthews 2005). For

each county, we calculated the slope of annual LD incidence

regressed against time (years). This slope captured the rate

of disease increase, providing an informative measure of

risk. We would expect that high-risk areas would have high

disease incidence in any given year and exhibit rapid rates of

incidence increase (County-level LD risk measures corre-

lated closely whether based on slope or annual incidence;

r = 0.82). We then used this slope as the response variable

for our landscape epidemiological models.

Disease spread is an inherently spatial process, partic-

ularly early in the emergence of a disease (Hess et al. 2002).

Epidemiological data are likely to exhibit spatial autocor-

relation brought about by endogenous (disease spread

Stacie J. Robinson et al.



locally through contact between neighbors) as well as

exogenous factors (neighboring areas may be subject to

similar environments) (Lawson 2013). Thus, we imple-

mented a spatial simultaneous autoregressive (SAR) model.

The autoregressive term (q) in the SAR model lets us

acknowledge that disease incidence is not independent in

each county, and the q parameter quantifies the depen-

dence on incidence in neighboring counties (Waller and

Gotway 2004). SAR models are particularly well suited to

capture spatial patterns in non-uniform areal data typical

of county-level analyses (Wall 2004). Further, because we

are specifically characterizing the spatial dependence

structure in the data (as opposed to simply detrending

spatial patterns or assigning random effects), this model is

well suited to replicate the spatial structure in the predictive

models used in further steps in the analysis. We fit a

landscape epidemiological model in the form:

yi ¼ qWijyj þ bX þ e;

where yi is the response variable (rate of disease increase) at

county i, and q is the coefficient of autocorrelation in the

response. Wij is a spatial weighting matrix wherein we

considered counties as neighbors to those with centroids

within 120 km (ensuring that even the largest counties were

neighbors with adjacent counties), and yj is the response in

the neighboring counties. b is the matrix of regression

coefficients describing the effects of environmental vari-

ables X, and e is the random error term. Models were fit

using the lagsarlm routine in the spdep package in R

(Bivand et al. 2011). We selected between competing

models based on Akaike Information Criterion (AIC)

weights (Burnham and Anderson 2002). We used an iter-

ative approach, first selecting from univariate models for

each variable. We chose the most informative variables

representing climate, landscape, LD origin, and host pop-

ulations based on AIC weights. We also requiring that

variables retained have regression coefficients significantly

different from 0 (P vaules � 0.05). Further, we eliminated

collinear variables based on variance inflation factors (using

a conservative threshold of 5.0; see Robinson and Schu-

macker 2009). We then compared models combining the

selected factors and interactions among them, again using

AIC weights to determine the most informative model.

Future Risk Prediction Model

Climate change has been recognized as a driving factor

influencing vector-borne diseases. As such, it is important

not only to understand the disease risk in current land-

scapes, but also to assess potential risk under future sce-

narios. After identifying risk factors under current

conditions, we applied models of climate and landscape

change to predict changes in TBP risk. To estimate the

range of realistic future LD risk, we based predictive models

on scenarios at the extremes of climate predictions from the

Intergovernmental Panel on Climate Change (IPCC). A low

climate change case (CClow) was based on the B1 scenario

emphasizing carbon emissions decrease and predicting a

1.1–2.9�C rise in global temperatures by 2100 (Nakicenovic

et al. 2000); MN temperatures would rise 0.5–2.5�C in this

scenario (Hayhoe et al. 2010). A high climate change case

(CChigh) was based on the A1FI scenario in which carbon

emissions increase and global temperatures rise 2.4–6.4�C

(Nakicenovic et al. 2000); up to 8�C in MN (Pryor et al.

2013).

To predict the future distribution of forest habitat

important to I. scapularis, we used tree habitat occupancy

models from the Tree Atlas project of the US Forest Service

(Prasad et al. 2007-ongoing). This model predicts the range

suitable for numerous tree species based on climate, ele-

vation, land use, and soil properties to determine the

habitat occupied by individual tree species, then used

predicted changes in climate and disturbance patterns to

predict the range suitable for each species by 2100 (Iverson

et al. 2008). To predict the potential future deciduous

forest landcover, we combined Tree Atlas predictions for

suitable tree habitat for all deciduous species in MN. The

same was done for coniferous species. The general predic-

tion was for replacement of coniferous forests with decid-

uous forests as climate warms and precipitation and

disturbance regimes change. We used Tree Atlas predic-

tions calculated under both the B1 (CClow) and A1FI

(CChigh) climate change scenarios.

RESULTS

TBP Data Description

From 1996 through 2011, 15,715 cases of I. scapularis-

transmitted disease were reported in Minnesota residents,

comprising 12,024 (77%) confirmed LD cases, 3,422 (22%)

confirmed and probable HA cases, and 269 (2%) confirmed

babesiosis cases (Fig. 1). Of these, 262 patients met case

definitions for more than one disease. The number of

I. scapularis-transmitted diseases in Minnesota increased

Environmental Risk Factors for Tick-Borne Pathogens



from 278 total cases (5.8 cases per 100,000 population) in

1996 to 2,063 total cases (39.7 cases per 100,000 popula-

tion) in 2011, a 742% increase over the 16-year period

(Fig. 2). Although HA was reported less frequently than

LD, it accounted for an increasing proportion of I. scapu-

laris-transmitted disease cases, rising from 7% of total cases

in 1996 to 38% of total cases in 2011. Babesiosis is still rare

by comparison. A strain of human ehrlichiosis (E. muris-

like agent) has also been recently reported in MN during

the study period (Pritt et al. 2011), but was not included in

the current analysis due to rarity. Increases in LD and other

tick-borne diseases were not spatially uniform across MN,

and showed a northwesterly geographic expansion trend

(Fig. 1).

Environmental Risk Factor Model

The best model for LD increase in MN incorporated spatial

autocorrelation, angle from outbreak origin, climate fac-

tors, and tick habitat, (Fig. 3):

Y * q + ANGL + DD > 0(categorical) + DEC

The SAR modeling framework was important for

accounting for the spatially dependent nature of our epi-

demiological data; evidenced by significance of the q

parameter, and tests of residual autocorrelation (lmmo-

rantest in spdep; Bivand et al. 2011) indicate that

accounting for spatial pattern directly in the model is

essential to avoid autocorrelation in the residuals. All

models incorporating some combination of DD > 0 and

DEC provided strong explanatory power (Table 1), indi-

cating their importance as drivers of TBP risk in MN.

Variables were scaled so that parameter estimates could

be compared (Table 2). Our model indicates that

DD > 0(categorical) had the strongest effect on the

increasing risk of LD in MN. Counties with ideal or fair

temperature conditions experienced 3- to 4-U increase in

LD risk compared to counties with cold temperature con-

ditions (DD < 0 below 2900). For each unit of increase in

deciduous forest cover (DEC) LD risk increased over 1.5 U.

Risk increased at a lower, but significant rate, in counties at

a northwesterly angle from the county of LD origin. The

model-predicted LD risk under current environmental

conditions was strongly correlated with observed risk val-

ues, though spatial smoothing was evident in the model-

derived values (Fig. 3d–e). Recalling that the response

variable is the slope of LD increase over a 16 year period in

each county, the model-derived risk measures indicate a

rate of increase in annual incidence per 100,000 residents.

Future Risk Prediction Model

Predictions of future LD were similar under both climate

change scenarios. LD risk increased overall and most sub-

stantially for northeastern counties, where future models

predict transition from coniferous to more deciduous

forest, and where cold counties transitioned to fair or ideal

temperature regimes for ticks. Under the CClow scenario,

DD > 0 in the average county increased by 166 degree

days (a 4.8% increase), leaving only two counties in the

cold and 11 counties in the fair DD > 0 categories

(Fig. 4a). The average county gained 1.29% DEC landcover

Figure 2. Total reports of tick-borne diseases

increased 742% in Minnesota from 1996 to 2011.

Lines show Lyme disease (dotted), human

anaplasmosis (dashed), and babesiosis (solid).

Data are based on total cases (state-wide)

reported to the Minnesota Department of

Health.
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(Fig. 4c). Under the CChigh scenario, the average county

experienced an increase of 1,166 in DD > 0, representing a

34.3% increase from observed levels (Fig. 4b). Under this

scenario, all 87 counties had climates in the ideal DD > 0

category. The average county gained 1.94% DEC landcover

(Fig. 4d). Note that the overall proportion of forest cover

in MN was predicted to change little; the majority of DEC

increase was due to replacement of declining CON forests.

While the model based on current environmental condi-

tions yielded a maximum LD risk estimate of 6.38 (increase

in incidence per 100,000 residents) in the highest risk

counties, the CClow scenario predicted up to 8.86 (Fig. 4e),

and the CChigh scenario predicted up to 8.95 with more

counties in the highest risk levels (Fig. 4f). Southeast

counties with little forested habitat maintained the lowest

levels of TBP risk in MN.

Figure 3. Origin, Degree Days, and Forest Cover were the landscape and climate factors identified as drivers of tick-borne risk in MN (top

row). Observed data (bottom left) were used to fit a landscape epidemiological model; predicted values (bottom right).

Environmental Risk Factors for Tick-Borne Pathogens



DISCUSSION

The incidence of reported I. scapularis-transmitted diseases

in Minnesota increased markedly from 1996 through 2011.

By examining landscape factors in a multiple regression

framework, we were able to show that both landcover and

climate conditions played important roles in the distribu-

tion of TBP risk across Minnesota. Further, by applying our

landscape epidemiological model to future conditions

projected under climate change scenarios, we were able to

estimate the future expansion of TBP risk.

Increasing Incidence of TBP in MN

The increased incidence of LD, concomitant with HA

and babesiosis, suggests a true increase in I. scapularis-

vectored pathogens in MN, rather than disease reporting

issues. Although MDH surveillance methods did not

change substantially during this time, increased physician

awareness or diagnostic testing for HA and babesiosis

could partially explain why the incidence of these diseases

rose at a faster rate than LD. However, the distinct

spatial expansion of all of the diseases indicates a likely

transmission increase rather than a disease reporting

issue.

Counties at the highest risk for LD were northwest of

MN’s LD origin. We note that, while early case reports

suggest that LD first became established in the Pine County

area of MN, we cannot confirm the actual entry point of

Borrelia-infected ticks. However, epidemiological data

suggest that this area of high and early incidence is a useful

reference point for modeling efforts. Additionally, a num-

ber of LD cases from urban counties (Ramsey and

Hennepin) may have been exposed to ticks while traveling

to central Minnesota or western Wisconsin for recreation,

while residents of rural counties were more likely to have

been both exposed and diagnosed in their county of resi-

dence (based on case history interviews, MDH unpub-

lished). Thus, for the vast majority of the MN landscape,

the county-of-residence data adequately characterize TBP

exposure and project minimal bias on the spatial risk

analysis. If data are biased by reporting location, that bias

likely leads to under-estimation of risk in those counties

identified as high risk.

Table 1. The Best Model of Lyme Disease Risk in MN Included

Climate, Landscape, and Spatial Factors (**)

Candidate models AIC DAIC AICwt

O 333.79 49.93 6.9E-12

C 329.30 45.44 6.5E-11

L 307.67 23.81 3.2E-06

H 313.36 29.50 1.9E-07

O + C 331.22 47.36 2.5E-11

O + L 309.41 25.55 1.4E-06

O + H 310.36 26.50 8.5E-07

C + L 285.18 1.32 0.248

C + H 311.45 27.59 4.9E-07

L + H 300.71 16.85 1.1E-04

O + C + L 283.86 0.00 0.480**

O + C + H 312.57 28.71 2.8E-07

O + L + H 300.58 16.72 1.1E-04

C + L + H 287.12 3.26 0.094

O + C + L + H 285.85 1.99 0.177

Model component Variable

Origin (O) Angle from Pine Co.

Climate (C) DD > 0 (categorical)

Landscape (L) % Deciduous Forest

Hosts (H) Deer Harvest/square km

AIC weights indicate some support for any model including at least climate

and landscape (bold). The best variable for each model component was

chosen from preliminary examination of univariate models.

Table 2. Regression Parameters (b) for the Fitted Landscape

Epidemiological Model Show That Temperature Conditions

(DD > 0) and Deciduous Forest Habitat (DEC) had the Stron-

gest Effects on Lyme Disease Risk in MN from 1996 to 2011

Variable b P value

Spatial autocorrelation

q 0.518 0.002

Proximity

ANGL 0.409 0.057

Landscape

DEC 1.548 6.8E-14

Climate

DD > 0 (poor) 0 na

DD > 0 (fair) 3.213 1.5E-07

DD > 0 (good) 4.224 4.4E-08

Spatial autocorrelation (q) and angle from outbreak origin (ANGL) were

also significant factors.

Stacie J. Robinson et al.



Figure 4. Lyme disease risk factors and

predicted incidence increase change

under climate change predictions for

MN by 2100 (based on IPCC scenarios

B1 left, and A1Fl right). Datasets reflect-

ing changes in DD > 0 (a, b) and

deciduous forest distribution (c, d) were

used to model potential changes in LD

risk (e, f) (baseline values in Fig. 3.).

Environmental Risk Factors for Tick-Borne Pathogens



Risk Model Performance and TBP Risk Factors

Models combining spatial patterns, climate factors, and

landcover characteristics dramatically outperformed models

relying on either landscape or climatic factors alone, dem-

onstrating the complexity of the TBP ecology in MN.

Deciduous forest habitat is consistently noted as a key factor

in supporting the vertebrate host and tick communities

necessary for LD and other TBP cycles (Ostfeld et al. 2006).

Warmer areas within forested ecoregions were identified as

higher LD risk in our model, similar to previous studies

(Ogden et al. 2004). Temperature factors, and DD > 0

specifically, have been linked to tick survival, life stage

development, and synchronous feeding of larvae and

nymphs (Gatewood et al. 2009; Lindsay et al. 1998; Ogden

et al. 2005; Simon et al. 2014). While humidity is also

important to support tick populations and questing

(Schulze et al. 2001), neither precipitation nor wetland

variables were included in our best model. It is likely that

county-level summaries of these variables do not adequately

represent the microclimate relevant to questing ticks.

Additionally, although host populations are essential for

parasites, the deer harvest variable was not included in the

best model, likely because it contributed little that was not

accounted for by forest cover. In addition to relatively static

landscape characteristics, spread of LD is also influenced by

host-facilitated tick dispersal (Hamer et al. 2010; Leger et al.

2013), and long-distance dispersal is likely associated with

deer as well as migratory bird hosts (Brinkerhoff et al. 2009).

We would expect our model findings to be applicable to

other ixodid tick-vectored pathogen systems. As climate and

forest conditions grow more favorable to I. scapularis pop-

ulations in MN, we can expect that risk of HA and babesiosis

will rise in a fashion similar to that modeled for LD, and

continuing the trend observed since 1996. In fact, other re-

search has suggested more generally that warming climate

may favor emergence of several TBD (Kurtenbach et al. 2006;

Ogden et al. 2008; Woolhouse and Gowtage-Sequeria 2005).

Predictive models come with important caveats. Here,

we considered only environmental variables; human reac-

tions to environmental risks, future alterations in popula-

tion trends, land use, recreation, or other human behaviors

are beyond the scope of our analysis, but could impact

human exposure to TBP risks. Further, diagnosis and

reporting of TBP are imperfect and incomplete data can

impact risk estimates (Pfaffle et al. 2013). While we used

landscape proxies of potential host communities, addi-

tional complex interactions among host species are likely to

impact establishment of tick and TBP communities (Levi

et al. 2012; Simon et al. 2014). Additionally, host move-

ment is not captured here, but may impact the introduc-

tion and spread of TBP (Brinkerhoff et al. 2009; Gatewood

et al. 2009; Ogden et al. 2013). Finally, cascading effects of

climate change and landscape change are likely to lead to

interactions and threshold effects that may not be well

explained by linear models. Future research incorporating

observational and experimental study of climate impacts on

habitat composition and host communities could clarify

some of these uncertainties.

CONCLUSIONS

Our research represents a strong combination of climate

and landscape predictions to demonstrate the likely in-

crease in TBP risk with climate change. The greatest in-

creases in risk were in forested regions that are currently

cold enough to provide poor conditions for tick develop-

mental cycles. The projected increases in deciduous forest

cover were small compared to predicted temperature

changes, but resulted in additional impacts on the future

disease risk. Results add to the growing body of research

suggesting important disease implications of warming cli-

mate. Both empirical-(Diuk-Wasser et al. 2010) and sim-

ulation-based (Ogden et al. 2005) models suggest that

warming climate will favor tick survival, population

expansion, and host feeding. Climate change scenarios (A2

and B2) have also been used to predict increases in suitable

tick range (Ogden et al. 2008), and recent observations

support such predictions; tick population expansions in

North America and Europe have been associated with

warming climate (reviewed in: Pfaffle et al. 2013).

The predicted increase of TBP under a warming cli-

mate and an increasingly deciduous landscape provides

advanced warning that will be important for public health

education and intervention. It is our hope that this land-

scape epidemiological model has the potential to inform

long-term planning of disease surveillance and prevention

efforts by public health agencies.
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